Multilinear Fourier multipliers on variable Lebesgue spaces
نویسندگان
چکیده
منابع مشابه
Multilinear Fourier Multipliers with Minimal Sobolev Regularity
Letm be a positive integer. In this talk, we will introduce optimal conditions,expressed in terms of Sobolev spaces, on m-linear Fourier multiplier operatorsto be bounded from a product of Lebesgue or Hardy spaces to Lebesgue spaces.Our results are sharp and cover the bilinear case (m = 2) obtained by Miyachiand Tomita [1]. References[1] Miyachi A., and Tomita N., Minima...
متن کاملCommutators for Fourier multipliers on Besov Spaces
The mapping properties of commutators [T,M ] = TM −MT , for operators between function spaces, and their various generalizations play an important role in harmonic analysis, PDE, interpolation theory and other related areas. A typical situation arises when M = Mb is the pointwise multiplication by a function b and T is a Calderón–Zygmund operator on R. Then well– known results of A.P. Calderón ...
متن کاملFourier Multipliers on Weighted L-spaces
In his 1986 paper in the Rev. Mat. Iberoamericana, A. Carbery proved that a singular integral operator is of weak type (p, p) on Lp(Rn) if its lacunary pieces satisfy a certain regularity condition. In this paper we prove that Carbery’s result is sharp in a certain sense. We also obtain a weighted analogue of Carbery’s result. Some applications of our results are also given.
متن کاملMultilinear Fourier Multipliers with Minimal Sobolev Regularity, I
We find optimal conditions on m-linear Fourier multipliers to give rise to bounded operators from a product of Hardy spaces Hj , 0 < pj ≤ 1, to Lebesgue spaces Lp. The conditions we obtain are necessary and sufficient for boundedness and are expressed in terms of L2-based Sobolev spaces. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky [1] and in the bilin...
متن کاملThe Sampling Theorem in Variable Lebesgue Spaces
hold. The facts above are well-known as the classical Shannon sampling theorem initially proved by Ogura [10]. Ashino and Mandai [1] generalized the sampling theorem in Lebesgue spaces L0(R) for 1 < p0 < ∞. Their generalized sampling theorem is the following. Theorem 1.1 ([1]). Let r > 0 and 1 < p0 < ∞. Then for all f ∈ L 0(R) with supp f̂ ⊂ [−rπ, rπ], we have the norm inequality C p r ‖f‖Lp0(Rn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2014
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2014-510